Acute Respiratory Distress Syndrome (ARDS):
Developing a Better Diagnostic Tool

Said H. Audi, PhD
Professor of Biomedical Engineering

OUTLINE
1. Present an ARDS case study.
2. Review ARDS prevalence, causes, disease progression, and current diagnosis criteria.
3. Describe the approach we are using to develop a better tool for diagnosing ARDS.

ARDS Case Study
- 80 year old male admitted to the ER with:
 - Shortness of breath, rapid breathing rate, and low blood oxygen saturation.
 - Diagnosed with ARDS, and admitted to the ICU.
 - Placed on mechanical ventilation to improve blood oxygenation.
 - Blood oxygenation improved within the first 24 hours, but worsened by the second day.
 - Day 4: kidneys failed.
 - Patient died later that day.

Less than a week from ER admission to death!
What caused the ARDS in this patient?

- 7 weeks prior to admission to ICU, the patient was diagnosed with cancer (lymphoma).
 - Lung CT scan was normal at the time of cancer diagnosis.
- Received 2 doses of chemotherapeutic drugs with low risk for lung injury in most patients.
- Drugs caused lung injury and ARDS, which in turn caused death from multi-organ failure.

Could a better diagnostic tool have changed the outcome for this patient?

Review ARDS prevalence, causes, disease progression, and current diagnosis criteria.

ARDS: Prevalence, Mortality, and Healthcare Costs

- A devastating lung disease.
- One of the most frequent causes of admission to Medical ICUs.
- Severe ARDS:
 - Accounts for 10-15% of ICU admissions.
 - Occurs in ~200,000 patients in the US per year.
 - Carries a mortality rate of ~40%.
 - Accounts for 75,000 deaths, 3.6 million hospital days, and $5 billions in healthcare costs in the U.S. alone per year.
- Lack of clinical means for early diagnosis.
- Lack of effective therapies.

- The long-term goal of my research is to address these critical clinical needs.
Clinical Causes of ARDS

Direct Injury to the Lung
- **Common:** Pneumonia

Less common:
- Inhalation injury
- Pulmonary contusion
- Fat emboli
- Near drowning

Indirect Injury to the Lung
- **Common:**
 - Sepsis
 - Severe trauma

Less common:
- Multiple blood transfusions
- Severe burns
- Head injury
- Drug overdose

Gas Exchange in a Normal Lung: “Tight” Air-Blood Barrier

- **Alveolus**
- **Air**
- **O₂/CO₂**
- **Capillary**
 - "Thin and tight" Air-Blood Barrier

ARDS: “Leaky” Air-Blood Barrier

- **Alveolus**
- **Air**
- **Fluid (edema)**
- **O₂/CO₂**
 - "Leaky" air-blood barrier

- **Edema**
- **Low blood oxygenation**
- **Multi-organ failure**
- **Death**
 - Recovery

Biochemical Changes Precede Structural Changes

Early

- Inflammation
- Increase in oxidants production
- "Leaky" air-blood barrier

ARDS: Lung edema, shortness of breath, rapid breathing, low blood oxygenation.

Current diagnosis

Late

- Multi-organ failure and death

Describe the approach we are using to develop a better tool for diagnosing ARDS.

Rat Model of Human ARDS

- ARDS induced by exposing rats to 100% oxygen (O_2)

High oxygen chamber

Early Biochemical Changes in the Progression of ARDS

Glutathione (GSH): Important cellular antioxidant

![Graph showing cumulative mortality (%) over hours of exposure to 100% O2]

Inflammation, oxidants

GSH

cell

GSH

cell

Hours of Exposure to 100% O2

Cumm ulative Mortality (%)

0 20 40 60 80 100

GSH

Early phase

Single-Photon Emission Computed Tomography (SPECT) Imaging

- Clinical functional imaging modality.
- Requires the delivery of a biomarker (compound labelled with a gamma-emitting radioisotope) into a patient.
- Detection of the accumulation of the biomarker in the lungs using a gamma camera.

99mTc-hexamethylpropyleneamine (HMPAO)

- Clinical SPECT biomarker.
- Biomarker of tissue glutathione (GSH) content.
- When 99mTc-HMPAO enters the cells, it interacts with GSH and gets stuck within the cells.
- The more GSH present within the lung cells, the more lung uptake of 99mTc-HMPAO, and the brighter the image.
Lung Uptake of 99mTc-HMPAO Increases Early in the Progression of ARDS

Second Rat Model of Human ARDS
- Intra-tracheal instillation of endotoxin (bacteria, LPS).
- Rats experience ARDS like injury (mild) after 24 hrs, but fully recover within 7 days.

Could early detection of ARDS have changed the outcome for the patient in the case study?
- SPECT scan with 99mTc-HMPAO after the first dose of chemotherapy could have revealed early lung injury.
 - Assess the risk-to-benefit of the cancer treatment.
 - Use different drugs.
 - Take precautionary measures to reduce the risk of severe ARDS development.
SUMMARY

- ARDS is a devastating lung disease with a high mortality rate, in part due to the lack of a clinical tool for early diagnosis.
- Current diagnosis is based on late changes in disease progression.
- Cellular biochemical changes that occur early in the progression of ARDS can be used for early diagnosis of ARDS using clinical SPECT imaging.
- The lung uptake of the SPECT biomarker 99mTc-HMPAO increases early in the progression of ARDS, and tracks ARDS progression and regression.
- Early diagnosis of ARDS using SPECT imaging can enhance the efficacy of existing therapies, reduce the severity and healthcare costs of ARDS, and improve outcomes.

Acknowledgements

Current and former students:
Zhouhui Gan, PhD
Xiao Zhang, PhD
Nina Freyfi, MS
Kathrina Bery, MS

Collaborators:
Medical College of Wisconsin
Ranjan Dash, PhD
Meetha Medhora, PhD
Northwestern University
Ming Zhao, PhD

Marquette University
Anne Clough, PhD

Zablocki VA Medical Center
Elizabeth Jacobs, MD

ALVIN & MARION BERNSCHEIN FOUNDATION